### **Experimental Techniques of Optics**

**Spring 2017** 

PHYC 476,477, 302L

University of New Mexico

http://www.optics.unm.edu/sbahae/Optics Lab/

**Pre-requisites:** 

**302L:** PHYC 302 or 330 or 262 or 160

476L/477L: PHYC 302 or PHYC/ECE 463 or 464

Please drop the course if you have not passed at least one of the pre-requisite courses.

**Instructor: Mansoor Sheik-Bahae** 

**Teaching Assistants:** 

Junwei Meng (Tiger), Chih-Feng Wang and

**Mohammad Ghasemkhani (sometimes!)** 

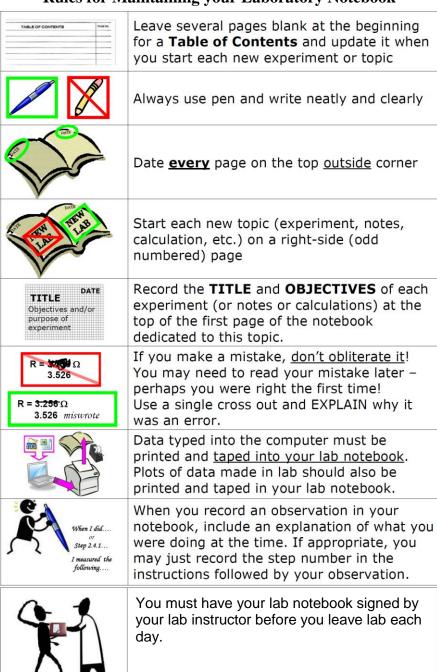
Lab Coordinator: Dr. Michael Hasselbeck



# **Grading Policy**

 Attendance, Interaction with TAs and Instructors during the lab sessions (Please notify me and your lab partner in advance by email if you have to skip a session; state your valid reason)

Lab Notebook


- Lab Reports
- Oral Exam (random)



#### Lab Notebook



#### **Rules for Maintaining your Laboratory Notebook**



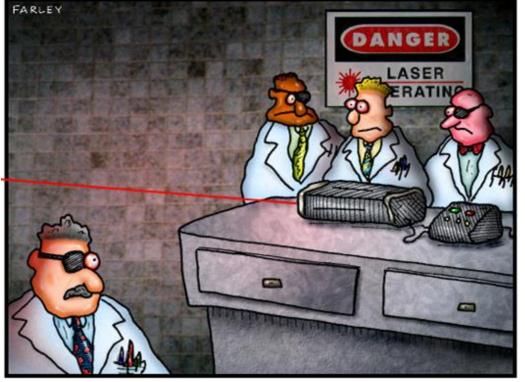
### **Experiments**

- Basic Optics Experiments (302L only)
- The Wavemeter
- Velocity Measurements by Optical Techniques
- Ray Tracing and Lens Aberrations
- Polarization Study
- He-Ne Laser

- Fiber Optics
- Fourier Optics
- Diode-Pumped Solid-State (DPSS)
  Laser
- Modelocking a CW He-Ne Laser
- Nonlinear Optics (NEW)
- Ti:sapphire laser (NEW; being developed)



### Student Teams


 You may team up with one of your fellow students to perform the experiments.

 Each member should keep her/his own "independent" lab notebook.

 One lab-report is needed for each experiment from each team.



Lab Safety First





University of New Mexico

Peer pressure in the laser lab

All students enrolled are *required* to read the <u>OSHA manual</u> carefully. You will be asked to sign an "agreement of understanding" form on the first session of this course.

## **Error Analysis**

### (how many significant figures?)

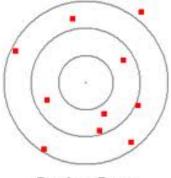
Is c=299 792 458 m/s exact?

- A measurement is not meaningful without an error estimate (uncertainty)
- No measurement is ever exact
- "Error" does NOT mean "blunder" or "mistake" (the latters can be corrected for)

"It is better to be roughly right than precisely wrong!"

Alan Greenspan Former U.S. Federal Reserve Chairman

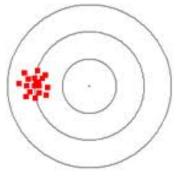







### **Types of Error**

### Statistical (Random) Errors:


Results from a random fluctuation in the process of measurement. Often quantifiable in terms of "number of measurements or trials". Tends to make measurements less *precise*.



Random Error

### Systematic Errors (Blunders?):

Results from a bias in the observation due to observing conditions or apparatus or technique or analysis. Tend to make measurements less *accurate*.

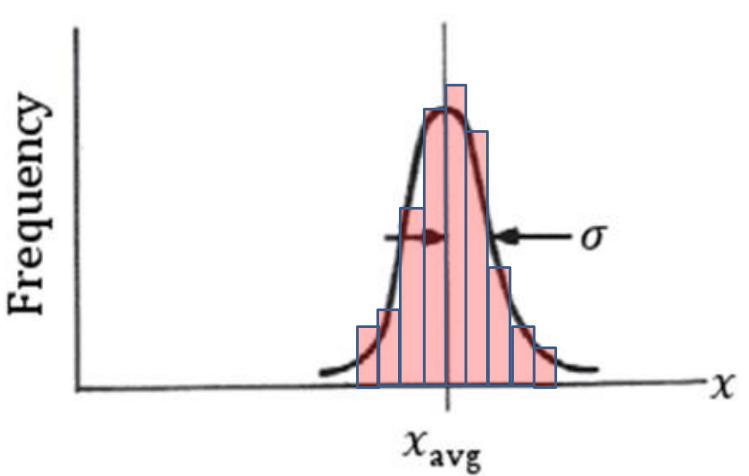


Systematic Error

#### Instrument Limitation Error:

Any measuring device can be used to within a degree of finesse.




12.65±0.005



1 2 3 4 5 6 7 8 9 10 11 12

half of "least count"

## Measurement Histogram





### **Measurement Uncertainty**

$$x_m = x_{ave} \pm \Delta x_{ave}$$

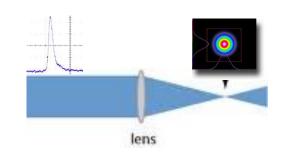
| Mean ( $x_{avg}$ )                                 | The average of all values of $x$ (the "best" value of $x$ ). This is the same as for small data sets.                                                                                 | $x_{\text{avg}} = \frac{\sum_{i=1}^{N} x_i}{N}$                                |
|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| Uncertainty in a measurement (△x)                  | Uncertainty in a single measurement of $x$ . The vast majority of your data lies in the range $x_{\mathrm{avg}} \pm \sigma$                                                           | $\Delta x = \sigma = \sqrt{\frac{\sum_{i=1}^{N} (x_i - x_{\text{avg}})^2}{N}}$ |
| Uncertainty<br>in the Mean<br>(∆x <sub>avg</sub> ) | Uncertainty in the mean value of $x$ . The actual value of $x$ will be somewhere in a neighborhood around $x_{\rm avg}$ . This neighborhood of values is the uncertainty in the mean. | $\Delta x_{\rm avg} = \frac{\sigma}{\sqrt{N}}$                                 |
| Measured Value                                     | The final reported value of a measurement of $\boldsymbol{x}$ contains both the average value and the uncertainty in the mean.                                                        | $x_{ m m} = x_{ m avg} \pm \Delta x_{ m avg}$                                  |



# **Error Propagation**

- If the parameter of interest f = F(x, y, z, ...) depends on multiple measured parameters x, y, z, ....
- The error in f,  $\sigma_f$ , depends on the function F, measured parameters x, y, z, ..., and their errors,  $\sigma_x$ ,  $\sigma_v$ ,  $\sigma_z$ , ...:

$$\sigma_f = \sqrt{\left(\frac{\partial F}{\partial x}\right)^2 \sigma_x^2 + \left(\frac{\partial F}{\partial y}\right)^2 \sigma_y^2 + \left(\frac{\partial F}{\partial z}\right)^2 \sigma_z^2 + \dots}$$


Errors from independent (un-correlated) parameters add in quadrature.



### An Example:

#### Determine peak on-axis intensity of a pulsed laser beam:

$$I(W/cm^{2}) = \frac{E(joules)}{t_{p}(sec)A(cm^{2})} = K\frac{E}{t_{p}w^{2}}$$



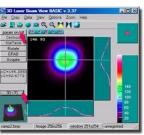
K is a constant

$$I(measured) = I_{ave} \pm \Delta I$$

with 
$$I_{ave} = K \frac{E_{ave}}{t_{p_{ave}} w_{ave}^2}$$

and

$$\Delta I = K \sqrt{\left(\frac{1}{t_p w^2}\right)_{ave}^2 \left(\Delta E\right)^2 + \left(\frac{E}{t_p^2 w^2}\right)_{ave}^2 \left(\Delta t_p\right)^2 + \left(\frac{2E}{t_p^2 w^3}\right)_{ave}^2 \left(\Delta w\right)^2} \quad \text{or} \qquad \qquad \frac{\Delta I}{I} = \sqrt{\left(\frac{\Delta E}{E}\right)^2 + \left(\frac{\Delta t_p}{t_p}\right)^2 + \left(\frac{\Delta w}{w}\right)^2}$$


energy meter



(calibration?)

beam profiler





fast photo-diode and scope

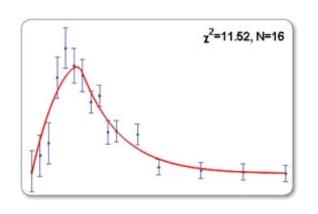


input impendence?

#### For instance:

$$E=(5.2\pm0.05) \, mJ$$

$$\frac{\Delta I}{I} \approx 0.1$$


$$w = (120 \pm 2) \mu m$$

$$I(measured)=2.1\pm0.2~GW/cm^2$$



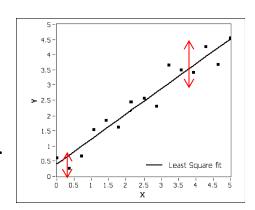


# Data Fitting (comparing with theory)



"least squares" analysis

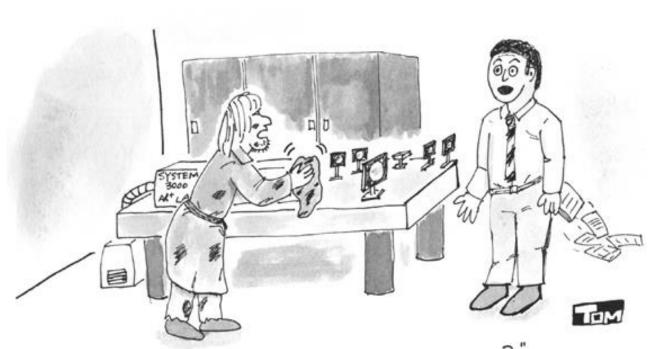
$$\chi^2 = \Sigma \frac{1}{\sigma_i^2} [y_i - f\left(x_i\right)]^2$$
 weighted Minimize  $\chi^2$ 


For linear fit (or power laws in log-log plots):

$$\chi^{2} = \sum \frac{1}{\sigma_{i}^{2}} [y_{i} - f(x_{i})]^{2} = \sum \frac{1}{\sigma_{i}^{2}} [y_{i} - (mx_{i} + b)]^{2}$$

Graphics or data analysis softwares (Origin, Excel, ..) do this for you.

$$\frac{\partial \chi^2}{\partial m} = 0$$


$$\frac{\partial x^2}{\partial b} = 0$$





### Keep the lab and the equipment clean & organized

Absolutely no finger prints on optics please!!



"SPARE CHANGE, PROFESSOR?"

©1996 Tom Swanson

